Performance Evaluation of Feature Detection for Local Optical Flow Tracking
نویسندگان
چکیده
Due to its high computational efficiency the Kanade Lucas Tomasi feature tracker is still widely accepted and a utilized method to compute sparse motion fields or trajectories in video sequences. This method is made up of a Good Feature To Track feature detection and a pyramidal Lucas Kanade feature tracking algorithm. It is well known that the Good Feature To Track takes into account the Aperture Problem, but it does not consider the Generalized Aperture Problem. In this paper we want to provide an evaluation of a set of alternative feature detection methods. These methods are taken from feature matching techniques like FAST, SIFT and MSER. The evaluation is based on the Middlebury dataset and performed by using an improved pyramidal Lucas Kanade method, called RLOF feature tracker. To compare the results of the feature detector and RLOF pair, we propose a methodology based on accuracy, efficiency and covering measurements.
منابع مشابه
Multi-Resolution Estimation of Optical Flow for Vehicle Tracking
This paper presents a hierarchical multi-resolution estimation of optical flow for a vehicle tracking system which can be used in a practical environment. Aiming at accurate estimation of optical flow, we construct a strong feature tracking system based on the Shi-Tomasi approach. As a feature detector, we use a Scale-Invariant Feature Transform (SIFT) algorithm, which not only firmly focuses o...
متن کاملApplication of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کاملRobust modified L2 local optical flow estimation and feature tracking
This paper describes a robust method for the local optical flow estimation and the KLT feature tracking performed on the GPU. Therefore we present an estimator based on the L norm with robust characteristics. In order to increase the robustness at discontinuities we propose a strategy to adapt the used region size. The GPU implementation of our approach achieves real-time (>25fps) performance f...
متن کاملPerformance Evaluation of Local Detectors in the Presence of Noise for Multi-Sensor Remote Sensing Image Matching
Automatic, efficient, accurate, and stable image matching is one of the most critical issues in remote sensing, photogrammetry, and machine vision. In recent decades, various algorithms have been proposed based on the feature-based framework, which concentrates on detecting and describing local features. Understanding the characteristics of different matching algorithms in various applications ...
متن کاملRobot Motion Vision Pait I: Theory
A direct method called fixation is introduced for solving the general motion vision problem, arbitrary motion relative to an arbitrary environment. This method results in a linear constraint equation which explicitly expresses the rotational velocity in terms of the translational velocity. The combination of this constraint equation with the Brightness-Change Constraint Equation solves the gene...
متن کامل